
RE-Introduction to
One-Sided communication

PGAS Languages:
Coarrays in Fortran 2008

UPC

Nathan Wichmann
wichmann@cray.com

Outline

  What is one-sided communication?
  How do I do this?
  Why would I want to?
  Examples and success stories.

February 10 Slide 2

PGAS programming
  Partitioned Global Address Space
  Language level parallelism as opposed to library calls

•  Extension to C – Unified Parallel C (UPC)
•  New feature called coarrays in Fortran 2008 (CAF)

  Single-sided communication as opposed to two-sided MPI
communication

  Explicit synchronization required – this is (mostly) implicit in MPI
  Gives compiler lots of freedom for optimization
  Many algorithms are very naturally expressed using one-sided

language level parallelism
•  Handing off work/data to another pe
•  Halo exchanges
•  Mesh manipulation and movement

2/1/10 3

PGAS and Cray
  Cray has been supporting CAF and UPC since the beginning

•  Support on the Cray T3E, X1, X2
  Full PGAS support on the Cray XT

•  Cray Compiling Environment 7.0 – Dec 08
•  Full UPC 1.2 specification
•  Full CAF support – CAF proposed for the Fortran 2008 standard
•  Hybrid MPI/PGAS codes supported – very important!

  Fully integrated with the Cray software stack
•  Same compiler drivers, job launch tools, libraries
•  Integrated with Craypat – Cray performance tools

2/1/10 4

Special features of Baker relating to CAF/UPC

  On X1 and X2, the custom processor directly emits
references for any memory location in the machine. Loads/
stores can be done to any global address in the system

  On Baker the Gemini NIC used to ‘extend’ address space of
Opteron references to access memory on remote nodes
•  Fortran or C compilers recognize CAF/UPC references and

generates appropriate messages to Gemini to load from or store to
remote memory

•  Users can stride on local offsets or across processor space with any
stride, including Gather/Scatter

Cray Inc. Preliminary and Proprietary 5

Fortran 2008 - Parallel programming

 Fortran 2008 is a natively parallel language

 SPMD programming model
 Simple syntax for one-sided communication
  Image synchronization
 Coordinated program startup and termination

February 10 Slide 6

Fortran 2008 - programming model
  Fortran 2008 is a natively parallel language

•  SPMD programming model
•  Data transfers coded using normal assignment statements

  Executable is replicated across processors (MPI-like)

  Each instance is called an “IMAGE”

  Each image has its own data objects

  Each image executes asynchronously except when syncs
are indicated

February 10 Slide 7

Coarray Fortran: Basics and terminology
 Any time a coarray appears without []’s, the

reference is to the data on the local image
 The number inside the []’s can reference any image

in the job, including myself
  If a reference with []’s appears to the right of the =,

it is often called a “get”
  If a reference with []’s appears to the right of the =,

it is often called a “put”

 What does this do? a(:)[ri] = b(:)
The statement copies, or “puts” the local “b” into the “a” on image “ri”

February 10 Slide 8

February 10 Slide 9

Fortran 2008 - Parallel programming
  Declaration and allocation

 real(8), ALLOCATABLE :: rcvbuf(:,:)[*]
! Allocate m*n elements on each processor
 ALLOCATE(rcvbuf(m,n)[*])

  Reference

! Put data from my local buf into rcvbuf on image k
 rcvbuf(:,:)[k] = localbuf(:,:)

  PE information

 this_image(), num_images()

  Syncronization
 sync all()
 sync images(array_of_images)

Array Example

Real(8) a(3)

February 10 Slide 10

Image 1
 Image 2
 Image 3
 Image 4

a(1)

a(2)

a(3)

a(1)

a(2)

a(3)

a(1)

a(2)

a(3)

a(1)

a(2)

a(3)

Coarray Example

Real(8) a(3)[*]

February 10 Slide 11

Image 1
 Image 2
 Image 3
 Image 4

a(1)[1]

a(2)[1]

a(3)[1]

a(1)[1]

a(2)[2]

a(3)[2]

a(1)[3]

a(2)[3]

a(3)[3]

a(1)[4]

a(2)[4]

a(3)[4]

Fortran 2008 – Basic “Put”

real :: s(100)
real,allocatable :: a(:)[:] ! A is a “Coarray”

allocate (a(100)[*])
a = 10.
s = 11.
mype = this_image()

if (mype > 1) a(:)[mype-1] = s(:)

February 10 Slide 12

Fortran 2008 - synchronization
Explicit statements:

sync all
sync images (array_of_images)
sync memory
critical / end critical
lock / unlock

Implicit synchronization:
allocation of a coarray
deallocation of a coarray (either explicit or implicit)

RYO synchronization:
 atomic_ref / atomic_def

February 10 Slide 13

Halo Exchange: MPI
doubleprecision ai(ip,ihp,6)
...
call mpi_isend (ai(1,1,1), ihp*ip, mpi_real, imgi(myp+1), &
 9905, mpi_comm_world, mpireq(1), mpierr);
call mpi_isend (ai(1,1,2), 2*ihp*ip, mpi_real, imgi(myp-1), &
 9906, mpi_comm_world, mpireq(2), mpierr);
call mpi_irecv (ai(1,1,4), ihp*ip, mpi_real, imgi(myp-1), &
 9905, mpi_comm_world, mpireq(3), mpierr);
call mpi_irecv (ai(1,1,5), 2*ihp*ip, mpi_real, imgi(myp+1), &
 9906, mpi_comm_world, mpireq(4), mpierr);
call mpi_waitall (4, mpireq, mpistat)

Each PE must make calls to MPI to do BOTH the send and the receive. Both PE’s
must know the communication will happen and perform the message passing “at
the right time”.

February 10 Slide 14

Halo Exchange: Coarray Fortran

Real(8) ai(ip,ihp,6)[*]
....
ai(:,:,4:4) = ai(:,:,1:1)[img(myp-1)]
ai(:,:,5:6) = ai(:,:,2:3)[img(myp+1)]
sync all()

Simple, transparent syntax. The other PE does not need to directly
participate

One only needs to know there are not race conditions on the data.

February 10 Slide 15

What if one cannot change variables?
  Subroutine dummy argument

 SUBROUTINE fft_transpose(zstick, . . .)
 COMPLEX :: zstick(*)

  Define derived type

 TARGET zstick

 TYPE CAFP
 COMPLEX, DIMENSION(:), POINTER :: zstick
 END TYPE CAFP
 TYPE (CAFP) image[*]

February 10 Slide 16

What if cannot change (cont’d)
  Set pointer

 image%zstick => zstick(1:n)
 sync all()

  Reference zstick(i) on proc k

 image[k]%zstick(i)

February 10 Slide 17

Fortran 2008 - pointer components
subroutine sort(t,n)
integer :: n
real,target :: t(n)

type cafp
 real,pointer :: t(:)
end type cafp
type(cafp) :: image[*]

image%t => t ! Point at the remote data
sync all ! Sync to make sure everyone has completed the pointing
x = image[1]%t(1) ! Reference the remote data
…

February 10 Slide 18

CAF works well with OpenMP

!$omp parallel do …
do j=1,m
 do i=1,n
 target(i,j)[target_proc] = source(i,j)
enddo;enddo

All OMP threads are local to an image
(i.e. Multi-level parallelism)

Uses all OMP threads to “put” data into
the target location on the target
processor.

February 10 Slide 19

What is UPC?
  Unified Parallel C
  Syntactic extension to Standard C
  Designed by IDA CCS, UC-Berkeley, LANL
  SPMD plus HPF-like data and work distribution features

February 10 Slide 20

UPC Examples

shared double a[3][THREADS];

February 10 Slide 21

Thread 0
 Thread 1
 Thread 2
 Thread 3

a[0][0]
 a[0][1]
 a[0][2]
 a[0][3]

a[1][1]

a[2][1]
a[2][0]

a[1][0]
 a[1][2]

a[2][2]

a[1][3]

a[2][3]

Halo Exchange: Cray UPC Subset

shared double ai[6][ihp][ip][THREADS];
...
for (j=0; j<ihp; j++){

 for (i=0; i<ip; i++){
 ai[3][j][i][MYTHREAD] = ai[0][j][i][thd[myp-1]]
 ai[4][j][i][MYTHREAD] = ai[1][j][i][thd[myp+1]];
 ai[5][j][i][MYTHREAD] = ai[2][j][i][thd[myp+1]];
 }

}
upc_barrier();

Advantages very similar to CAF.

February 10 Slide 22

Advantages of One-Sided communication
  Easier to program (See Halo Exchange and Random Access)

•  Don’t have to write both send and receive

•  More transparent what is going on

  Enables new algorithms (See Dynamic Mesh CFD from AHPCRC)
•  Only one PE needs to do the communication. Data can be retrieved and modified without

coordination with PE holding the data
•  More freedom in when and where the communication is done.

  Reduced communication time overhead, hence better scalability (for
supporting hardware)

  Can spread out communications / Easier to Mix computation and
communication
•  Collectives like MPI_ALLTOALL concentrate communication

•  Perhaps better to get and put data as you need it.

February 10 Slide 23

Good Practices for UPC/CAF/shmem, etc.

February 10 Slide 24

  Use 4/8 byte sized globally addressable variables
  Try to “PUT” data instead of “GET” data
  Code to overlap communication with computation

  Depends on how “soon” you reference the variable
again and on the quality of the compiler

  Hardware is designed to support this
  Reduces communication hot spots

  Avoid use of strict shared types in UPC when possible
(increases memory synchronization requirements)

  Try to avoid generalized scatter/gather in inner loops
(unless overlapped with computation)

PGAS in practice:

Examples of how PGAS was, can,
and will be used

February 10 Slide 25

Smoothing out Communication
  MPI collectives can often focus all communication into a

specific time and place
  Can use CAF/UPC to spread that communication out and

overlap with computation
  Simplified MVH3:

do i=1,many
 call sweepx ! All compute, no communication
 call mpi_alltoall ! Intense communication
 call sweepy ! All compute, no communication
 call mpi_alltoall ! Intense communication
 call sweepz ! All compute, no communication
 call mpi_alltoall ! Intense communication
enddo

February 10 Slide 26

Smoothing out Communication
  Put data to next location as you compute it

do i=1,many
 call sweepx_put_to_y ! Compute, with communication spread out
 call sweepx_put_to_y ! Compute, with communication spread out
 call sweepx_put_to_y ! Compute, with communication spread out
enddo

February 10 Slide 27

GTC: Online/asynchronies diagnostic processing*
  GTC requires diagnostic to be run at the same time as

simulation
•  Too much data to store for post-processing
•  Does not need to prevent the simulation from proceeding

  One group of processors can process data while main
simulation process
•  How does one coordinate the data transfer?

February 10 Slide 28

* Thanks to Scott Klasky of ORNL for this idea

GTC: Online/asynchronies diagnostic processing
 Simulation group

do i=1,timestep

 call main_computation

 call check_if_diagnostic_buffer_read

 call put_data_to_diag

 call inform_diag_data_is_ready

enddo

 Diagnostic Group

do i=1,timestep

 call set_buffer_ready_flag

 call wait_for_data

 call perform_diagnostics

 call store_diagnostic_results

enddo

February 10 Slide 29

Simple double buffer can help reduce synchronization cost to close to zero

UPC Random Access:
Designed for Speed

  This version of UPC Random Access was originally written in
Spring 2004

  Written to maximize speed

  Had to work inside of the HPCC benchmark

  Had to run well on any number of CPUs

  Also happens to be a very productive way of writing the
Global RA.

February 10 Slide 30

Productivity: Fewer lines of code

UPC VERSION
#pragma _CRI concurrent
for (j=0; j<STRIPSIZE; j++)

 for (i=0; i<SendCnt/STRIPSIZE; i++) {
 VRan[j] = (VRan[j] << 1) ^ ((s64Int) VRan[j]< ZERO64B ?

POLY : ZERO64B);
 GlobalOffset = VRan[j] & (TableSize - 1);

 if (PowerofTwo) LocalOffset=GlobalOffset>>logNumProcs ;
 else LocalOffset=(double)GlobalOffset/

(double)THREADS;
 WhichPe=GlobalOffset-LocalOffset*THREADS;
 Table[LocalOffset][WhichPe] ^= VRan[j] ;
 }

}

BASE VERSION
NumRecvs = (NumProcs > 4) ?(Mmin(4,MAX_RECV)) : 1;
 for (j = 0; j < NumRecvs; j++)

MPI_Irecv(&LocalRecvBuffer[j*LOCAL_BUFFER_SIZE],
localBufferSize,INT64_DT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[j]);

while (i < SendCnt) {
do {
MPI_Testany(NumRecvs, inreq, &index, &have_done,

&status);
if (have_done) {
 if (status.MPI_TAG == UPDATE_TAG) {
 MPI_Get_count(&status, INT64_DT, &recvUpdates);
bufferBase = index*LOCAL_BUFFER_SIZE;
for (j=0; j < recvUpdates; j ++) {
 inmsg = LocalRecvBuffer[bufferBase+j];
 LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= inmsg;
 }
 } else if (status.MPI_TAG == FINISHED_TAG) {
 NumberReceiving--;
 } else {
 abort();
 }

February 10 Slide 31

Productivity : Fewer lines of code

UPC VERSION BASE VERSION

MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE],
localBufferSize,INT64_DT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[index]);

}
} while (have_done && NumberReceiving > 0);
 if (pendingUpdates < maxPendingUpdates) {
 Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ?

POLY : ZERO64B);
 GlobalOffset = Ran & (TableSize-1);
 if (GlobalOffset < Top)
 WhichPe = (GlobalOffset / (MinLocalTableSize +

1));
 else
 WhichPe = ((GlobalOffset - Remainder) /

MinLocalTableSize);
 if (WhichPe == MyProc) {
 LocalOffset = (Ran & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= Ran;
 }
 else {
 HPCC_InsertUpdate(Ran, WhichPe, Buckets);
 pendingUpdates++;
 }
 i++;
 }
 else {

February 10 Slide 32

Productivity : Fewer lines of code

UPC VERSION
BASE VERSION

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
 if (have_done) {
 outreq = MPI_REQUEST_NULL;
 pe = HPCC_GetUpdates(Buckets, LocalSendBuffer,

localBufferSize, &peUpdates);
 MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT,

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq);
 pendingUpdates -= peUpdates;
 }}}
while (pendingUpdates > 0) {
do {
MPI_Testany(NumRecvs, inreq, &index, &have_done,

&status);
if (have_done) {
 if (status.MPI_TAG == UPDATE_TAG) {
 MPI_Get_count(&status, INT64_DT, &recvUpdates);
 bufferBase = index*LOCAL_BUFFER_SIZE;
 for (j=0; j < recvUpdates; j ++) {
 inmsg = LocalRecvBuffer[bufferBase+j];
 LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= inmsg;
 }
} else if (status.MPI_TAG == FINISHED_TAG) {
 NumberReceiving--;

February 10 Slide 33

Productivity : Fewer lines of code

UPC VERSION

BASE VERSION
} else {
 abort();}
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE],

localBufferSize,INT64_DT, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD,&inreq[index]);

}} while (have_done && NumberReceiving > 0);
 MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
 if (have_done) {
 outreq = MPI_REQUEST_NULL;
 pe = HPCC_GetUpdates(Buckets, LocalSendBuffer,

localBufferSize, &peUpdates);
 MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT,

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq);
 pendingUpdates -= peUpdates;
 } }
for (proc_count = 0 ; proc_count < NumProcs ; +

+proc_count) {
 if (proc_count == MyProc) { finish_req[MyProc] =

MPI_REQUEST_NULL; continue; }
 MPI_Isend(&Ran, 1, INT64_DT, proc_count,

FINISHED_TAG,MPI_COMM_WORLD, finish_req + proc_count);
 }
while (NumberReceiving > 0) {

February 10 Slide 34

Productivity : Fewer lines of code

UPC VERSION
BASE VERSION

MPI_Waitany(NumRecvs, inreq, &index, &status);
if (status.MPI_TAG == UPDATE_TAG) {
 MPI_Get_count(&status, INT64_DT, &recvUpdates);
 bufferBase = index * LOCAL_BUFFER_SIZE;
for (j=0; j < recvUpdates; j ++) {
 inmsg = LocalRecvBuffer[bufferBase+j];
 LocalOffset = (inmsg & (TableSize - 1)) -

GlobalStartMyProc;
 HPCC_Table[LocalOffset] ^= inmsg;
 }
 } else if (status.MPI_TAG == FINISHED_TAG){
 NumberReceiving--;
 } else {
 abort(); }
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE],

localBufferSize,INT64_DT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &inreq[index]);

}
MPI_Waitall(NumProcs, finish_req, finish_statuses);
HPCC_FreeBuckets(Buckets, NumProcs);
for (j = 0; j < NumRecvs; j++) {
 MPI_Cancel(&inreq[j]);
 MPI_Wait(&inreq[j], &ignoredStatus);
 }

February 10 Slide 35

BenchC

  MPI mode
•  All communication and timing done using MPI calls

  UPC mode
•  Problem I/O, setup and initialization done using MPI
•  Core communication (gathers, scatters, collective operations), timing

done using UPC

  Communication method (MPI vs UPC) is selected at
compile-time

  UPC was incrementally added to the code, one routine at a
time.

Data Layout
  Very lightweight modification to the code – little disruption
  Create shared buffers for boundary exchanges

•  shared double *shared buffSH[THREADS]
•  buffSH[MYTHREAD] = (shared double *shared)upc_alloc(nec*sizeof(Element))

– for remote access of shared data
•  buff = (double *) buffSH[MYTHREAD] – for local access of shared data

buffSH[0] buffSH[1] buffSH[THREADS-1]

SHARED

PRIVATE

Thread 0 Thread 1 Thread THREADS-1

…

N2

…

Nn N1

 buff

 buff buff

BenchC UPC Communication Patterns
  Gathers/Scatters

 …initial ordering of data…
 ip = ep[i];
 for (j = 0; j < num; j++)

 bg[iloc1 + j] = buffSH[ip][iloc2 + j] /*collect data from across THREADS*/
  Broadcasts/Reductions

 global_normSH[MYTHREAD] = loc_val;
 if (MYTHREAD == 0){
 for (ip = 1; ip < THREADS; ip++) loc_val +=global_normSH[ip];
 for (ip = 0; ip < THREADS; ip++) global_normSH[ip] = loc_val;
 }

  Code just compiles normally
•  cc –h upc –c –h list=ms my_upc_broadcast.c

UPC BenchC code example-Cray XT5m
 664. 1-------< for (i = 0; i < epnum; i++){
 665. 1 iloc1 = eploc [i]*len;
 666. 1 iloc2 = eploc2[i]*len;
 667. 1 num = (eploc[i+1] - eploc[i+0])*len;
 668. 1 btSend += num*8; /* sizeof(double) */
 669. 1 ip = ep[i];
 670. 1
 671. 1 #pragma ivdep
 672. 1 r----<> for (j = 0; j < num; j++) buffSH[ip][iloc2+j] =

 bg[iloc1+j];

2/1/10 39

CC-6005 CC: SCALAR File = ncommsetup.c, Line = 672
 A loop was unrolled 8 times.

CC-6325 CC: VECTOR File = ncommsetup.c, Line = 672
 Although A loop was marked with an IVDEP directive, it cannot be vectorized
 because it contains one or more operations that have no vector form.

Dynamic-Mesh Generation
Xflow from AHPCRC
  Tightly Couple automatic mesh generation technology within

parallel flow solvers
•  Mesh generation never stop and runs in-conjunction with the flow

solver
•  Mech continuously changes due to changes in geometry.or other

conditions

40

Source: PGAS presentation of Andrew Johnson of AHPCRC

XFlow
  Complex CFD applications have moving components and/or

changing domain shapes
•  Rotational geometries and/or flapping wings
•  Most fluid-structure interaction applications
•  Engines, turbines, pumps, etc.
•  Fluid-particle flows and free-surface flow

  Many methods have been developed to solve these types of
applications
•  None are ideal and all have limitations

  MPI approach to “Dynamic-Mesh CFD” was unsuccessful in
the past due to algorithm complexity (~1997 time frame)

  Ultimate goal of “Dynamic-Mesh CFD”
•  Mesh should be “dependent” on the solution by continuously changing

XFlow

  Fully integrate automatic mesh generation within the parallel flow solver
•  Mesh generation never stops and runs in-conjunction with the flow

solver
  Element connectivity changes as required to maintain a

“Delaunay” mesh
  New nodes added as required to match user-specified refinement

values
  Existing nodes deleted when not needed

•  Mesh continuously changes due to changes in geometry and/or the
solution
  Mesh size can grow or shrink at each time step

  Very complicated method
•  Parallelism (UPC), vectorization, dynamic data structures, solvers

(mesh moving and fluid flow), general CFD accuracy, scalability, CAD
links, etc.

•  Will take time to fully evaluate

XFlow
  Mesh is distributed amongst all processors (fairly uniform loading)
  Developed a fast Parallel Recursive Center Bi-section mesh partitioner
  Each processor maintains and controls its own piece of the mesh

•  Each processor has a list of nodes, faces, and elements
•  Each list consists of an array of C structures (Node, Face, or Element arrays)
•  These arrays are defined “shared”

  Adds a “processor-dimension” to each array
 elementsSH[proc][local-index].n[0-through-4]
 elementsSH[proc][local-index].np[0-hrough-4]
 elements[local-index].c[X]
 elements[local-index].det

  Can read-from, or write-to, other processors “entities” whenever required
  Only 1 processor is allowed to actually change the mesh at one time
  Lots of barriers (upc_barrier) and synchronization throughout

XFlow
  What this method needs…

•  Each processor able to reference any arbitrary elements, faces, or
nodes across entire mesh

•  Each processor able to modify any other processors portion of the
mesh

•  Each processor able to search anywhere in the mesh
•  For performance, minimize these off-processor references by using

smart mesh partitioning techniques
  Why MPI is not a good fit for this method

•  Can’t arbitrarily read-from or write-to other processors data
•  Searches “stop” at processor/partition boundaries

  Partition boundaries are “hard” (enforced) boundaries
•  A processor can’t change and alter another processor’s mesh

structure
  Why is UPC good

•  You can do these kinds of things
  Need to carefully use memory/process barriers

February 10 Slide 45

Dynamic Mesh

February 10 Slide 46

February 10 Slide 47

One-Sided Conclusions

 They offer improved productivity of explicit
communication codes on all platforms

 They enable new algorithms that are difficult to
impossible to code using two-sided communication

 They offer improved performance on Cray platforms

February 10 Slide 48

